On the Zeros of Linear Differential Polynomials with Small Rational Coefficients
نویسنده
چکیده
We prove the following: suppose that J{z) is transcendental and meromorphic of finite order in the plane, and that the linear differential polynomial F(z) is defined by and is non-constant, where ak_j(z), ...,ao(z) are rational functions vanishing at infinity. Then N(r,l/(fFF')) = implies that N(r,f) = O(logr). A corresponding result is proved for the case where F =f' + af, where a is a constant. The problem is related to results of Frank and Hellerstein and others.
منابع مشابه
Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملSmall Zeros of Quadratic Forms with Linear Conditions
where H here stands for height of x and F , respectively. This generalizes a well known result of Cassels [2] about the existence of small zeros of quadratic forms with rational coefficients to the existence of small zeros of quadratic polynomials with rational coefficients. We generalize Masser’s result in the following way. Let K be a number field of degree d over Q. Let the coefficients fij ...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006